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Abstract

The numerical simulation of steady planar two-dimensional, laminar flow of an

incompressible fluid through an abruptly contracting channel using spectral domain

decomposition methods is described. The key features of the method are the

decomposition of the flow region into a number of rectangular subregions and

spectral approximations which are pointwise C' -ontinuous across subregion

interfaces. Spectral approximations to the solution are obtained for Reynolds

numbers in the range (0, 5001. The size of the salient corner vortex decreases as the

Reynolds number increases from 0 to around 45. As the Reynolds number is

increased further the vortex grows slowly. A vortex is detected downstream of the

contraction at a Reynolds number of around 175 that continues to grow as the

Reynolds number is increased further.

!Research was supported in part for the second author by the National
Aeronautics and Space Administration under NASA Contract No. NASI-18605 while he
was in residence at the Institute for Computer Applications in Science and
Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.



t. Introduction

The numerical simulation of the flow in a constricted channel is considered

using spectral domain decomposition techniques. The first numerical solutions to

this problem were obtained by Dennis and Smith (1980) using a finite difference

discretization of the stream function - vorticity formulation of the governing

equations. They did not detect a downstream recirculation region caused by the

flow separating at the corner despite using a very fine uniform grid. In a recent

paper Hunt (1989) uses a non-uniform grid to ensure a dense distribution of grid

points in the regions of the flow which need to be resolved. He places a locally

fine mesh downstream of the constriction and around the re-entrant corner since

this gives rise to a singularity in the vorticity.

In this paper the governing equations are written in terms of the stream

function. This means that mass is conserved identically. The flow region is

divided into a number of rectangular subdomains. In each of these subdomains the

stream function is approximated by a truncated double Chebyshev expansion. The

expansion coefficients are determined by collocating the governing equation and

appropriate interface continuity conditions between subdomains. The decomposition

is such that the Chebyshev collocation points are distributed densely around the

corner and near solid boundaries. This is important computationally in order to

resolve the main features of the flow efficiently.

In previous work, Karageorghis and Phillips (1989a) consider nonconforming

subdomains because of their ease of implementation. Although this strategy works

well for the Stokes problem, a lack of interface continuity appears for the Navier-

Stokes problem (Karageorghis and Phillips (1989b)) for values of the Reynolds

number around 200, eventually causing the method to break down completely. The

spectral approximations obtained are not pointwise continuous across the subdomain

interface. In this paper a collocation strategy is used which generates pointwise C'

continuous apprc.mations across the interfaces. As a result no computational limit

on the value of the Reynolds number has yet been encountered. Numerical

solutions are obtained for values of the Reynolds number up to 500.

The matrices arising from spectral discretizations are not sparse like their
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finite difference and finite element counterparts. However, when used in

conjunction with domain decomposition techniques these matrices possess a block

tridiagonal structure which can be exploited when designing methods of solution.

Here we use a subroutine from the NAG Library which solves almost block diagonal

systems (Brankin and Gladwell (1990)). This method is as efficient as the

capacitance matrix method in terms of cost and storage but is found to be more

stable (Karageorghis and Phillips (1990)).

Spectral approximations to the solution of this problem are obtained for

Reynolds numbers in the range (0, 5001. A comparison with the work of Dennis and

Smith (1980) shows good agreement between the sets of results in terms of stream

function contours in the bulk of the flow and the description of the salient corner

vortex. Although they did not find a downstream recirculation region there is a

hint of its existence on their finest glides for Reynolds numbers above 1000. They

probably failed to detect this behaviour in their numerical simulations because the

grid employed was not fine enough in this region. In our calculations separation

first appears at around Re = 175 which is slightly earlier than Hunt (1989) predicts.

The separation length and the strength of the vortex increase as Re increases, the

length being roughly proportional to Re. The spectral collocation method predicts

longer separation lengths than Hunt (1989). On the finest grids used the spectral

collocation method employs about a third of the number of degrees of freedom as

Hunt (1989) and a fifteenth of the number of degrees of freedom as Dennis and

Smith (1980).

2. The Governing Equations

We consider the steady laminar flow of an incompressible fluid through an

abruptly contracting channel with walls at y - I 1 for x < 0, y - ± I for x > 0

and 1/2 < Jyl <, I for x = 0. Upstream we impose parabolic Poiseuille flow and

we suppose that the flow is parabolic again far enough downstream. Since the flow

is symmetric about y = 0 it is only necessary to seek a solution for y 0.

In terms of non-dimensional variables the incompressible Navier-Stokes

equations are

(v . 7)v = -7 Yp ± (Re) - 7 2v , (2.1)
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.. v= 0 , (2.2)

where v = (u, v) is the velocity vector, p is the pressure and Re is the Reynolds

number. The introduction of a stream function, W(x, y), defined by

u -- v (2.3)

means that the continuity equation (2.2) is satisfied identically and (2.1) becomes,

after elimination of the pressure,

- Re C-0 L 0 (2.4)

The boundary conditions are

1 0 on y = l, x 0 and y ,x 0, (2.5)

3 y3
ay I,2 nx O

32

= 0, - = 0 on y =0. (2.7)3y 
2

The conditions on y = 0 preserve the symmetry of the flow while the other

conditions represent the no-slip conditions.

The governing equation (2.4) is a nonlinear partial differential equation for

the stream function. It is solved in an iterative fashion using a Newton-type

method to linearize it (Phillips (1984)). It is the linearized partial differential

equation which is solved at each Newton step using a spectral collocation nethod.

Let us write (2.4) in operator form,

L(7) = 0 (2.8)

where L is a nonlinear operator. Suppose that W* is some approximation to the

solution of (2.8). To obtain an improved approximation w- replace L by its

linearization about V* and then solve the problem

L'(V *) = - L(*) , (2.9)



where L'(W) is the Frichet derivative of L at 0b defined by

L'(P)- = 7 -- Re [3 (72€) W3 : 0
y x x y a* a

(2.10)

The new approximation to the solution is thus ?P* 0 . This completes a single

Newton step and is repeated until convergence is reached.

3. Domain Decomposition and Spectral Approximation

Since spectral methods are most easily applied to problems defined in

rectangular regions, the natural domain decomposition of the flow region comprises

three rectangular subdomains with common point (0, 1/2) as shown in Figure 1. Such

a domain decomposition may be termed conforming since the sides of each rectangle

are contiguous with either a boundary segment or a side of another rectangle. A

further advantage of this decomposition is that it is possible to construct a

collocation scheme which results in pointwise C1 continuous approximations across

the subdomain interfaces.

The flow region is truncated upstream and downstream of the constriction at

finite distances h, and h, from the origin, respectively. The distances h, and h2

need to be sufficiently large so that the flow is fully developed in the entry and

exit sections. The domain truncation means that additional boundary conditions

need to be imposed on entry and exit, namely that the normal derivative of ?P

vanishes on entry and exit.

B C(0,1)

D(0, 1/2) E

II III

A(-h 1 , 0) G(O, 0) F(h 2-, 0)

Fig. 1 Three subdomain decomposition of flow region.
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In each subdomain the stream function ut(x, y) is approximated by ?k, y),

where

Mk Nk
k~x y)= k (Y) + 5 k k kiP Cx, y) 5 G, . Wm(x) P(Y) , k = 1, 1i, 111, (3.1)

m..Mk n-Nk0 0

and

G'(y) = GII(y) = y(3--y2) , GIII(y) = GI(2y);

M0 NI = Mil Ni-Mil- 2, Nl' =4.0 0 0 0 0 0

The polynomials {Wk(x)} and (Pn(y)} are modified shifted Chebyshev polynomials

which satisfy identically all the boundary conditions with the exception of the

conditions along the vertical wall CD. For example, in region I we have

W( = TM(x) t- cx TIN) + OMT~oW, , 2 : m ! M (3.2)

where Tm(x) , 0 1 m , are shifted Chebyshev polynomials on [-h 1 , 01

defined by

Tmcx) = Tin[ h

and ctm and 3m are given by

cc -- (-)m m2 , -3 (--)(, - 1) , 2 m M.

Similarly, we can show that

P" (y) - t'i(y) + &ltl(y) + lo1 "fo(y) , 2 < N, ,.3)

where t,' (y) , 0 < n < NI , are the shifted polynomials on [1/2, 1] defined by

Ti(y) = T, (4y-3)



and , I3n are given by

= - n:-1 -, n - l

The basis functions in regions 11 and III are defined in a similar fashion.

4. Collocation Strategy

The coefficients (amn} , k = 1, 11, 111 must be determined for the spectral

approximations (3.1) to be defined everywhere in the truncated flow region.

Suppose that at the beginning of a Newton step we have approximations amn to the

expansion coefficients of 7Pk(x,y). The numerical solution of the linearized equation

(2.9) determines the expansion coefficients (6a),n, of 01, the correction to ?Pk, in

region k for k -I, II, I1. We describe in some detail the process of calculating the

coefficients (6a)rn Once these are known, the updated approximation to the stream

function is just W -t which can be found by simply adding together a* and

(6a) r for each valve of m, n and k.

The linearized partial differential equation (2.9) is collocated in each

subdomain and the approximations in the three subregions are patched by imposing

the correct order of weak continuity across the subregion interfaces. The

collocation points in a subdomain are chosen to be those points at which the

Chebyshev polynomial of highest degree used in the representation in that

subdomain attains its extreme values. This choice gives rise to optimal

approximation properties of smooth functions. It can also be shown that when

Gaussian quadrature rules based on these points are used to evaluate the integrals

appearing in Galerkin formulations of certain differential equations, then the

resulting equations are equivalent to those determined by collocating the

differential equation at the same set of points. Thus, in region 1, for example, the

collocation points are given by

lI  h1(x i  - )y YJ +  3
- h - - 4 (4.1)

where
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= _ cosi(-r1 0 I _ M
M

yj -C cos , 0 j NI

NI

Boundary conditions

Due to the choice of modified Chebyshev polynomials as trial functions in

the expansions (3.1) the boundary conditions are automatically satisfied except along

x = 0 (1/2 - y : 1) in region I. Along this portion of the boundary there are

NI-+-1collocation points. We deduce from (3.1) that tO and O\ are polynomials of

degree N1 in y along x = 0 (1/2 y : 1) each depending on NI - 1 degrees of

freedom. Therefore collocation of the boundary conditions at the NI - 1 distinct

points (0, yl j - 0, 1, ..., NI 
- 2, ensures that the no-slip boundary conditions

are satisfied identically along this part of the boundary.

Interface continuity conditions

We impose C3 continuity of the stream function across the interfaces

between the subdomains. These conditions are collocated in such a way so as to

yield approximations that are pointwise C' continuous across the interfaces, but

whose second and third normal derivatives are continuous only at the interface

collocation points. If the initial approximation to the solution of the problem

satisfies these conditions then these continuity conditions are imposed on 0 at each

Newton step.

Let us examine the interface y = 1/2(-h, _. x < 0) between subregions I

and I, for example. Along y = 1/2, o1 and oII are polynomials of degree MI each

possessing MI - I degrees of freedom. We collocate at a sufficient number of

points on the interface to ensure that Of _ 1i is identically zero. This is

achieved if we impose

I(xx , 1) _ I(x,) = 0 i -2, 3, ... MI  2, (4.2)

and, in addition,

-o, (0, 0 (4.3)
ax 2
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Similarly, continuity of Oy is obtained by imposing

-(x 1) *(xI ) = o 3, M (4.4)
-y 'y " '

and- [ 1

(o, = a- = 0 (4.5)

The conditions which represent the continuity of the second and third normal

derivatives of 0 are collocated at the M I - 3 points (xi , 1/2) , i = 2, 3, ... ,

M 1-2. Thus, these derivatives are not pointwise continuous across the interface.

Moffatt (1964) shows that the leading term in the singular expansion of the Stokes

solution about the re-entrant corner (0, 1/2) is O(r X) where X =- 1.5445 and so it

would be inconsistent to impose pointwise continuity of these higher derivatives

across the interface.

The same collocation strategy is applied across the interface x = 0

(0 < y < 1/2) between subregions II and I1. As a result the correction 0 and its

normal derivative are pointwise continuous across the interfaces. The updated

approximations to the stream function also possess the same order of pointwise

continuity.

Linearized differential equation

The linearized differential equation (2.9) is collocated in each subregion at all

points on the collocation grid with the exception of those on or one in from each

subregion boundary, i.e.,

(X k e k, ..'Mk =2, ..,Nk -2,

for k = I, II or Ill.

When the spectral collocation equations resulting from the boundary

conditions, interface continuity conditions and differential equation are added

together, they yield a total of [(Ml - I) (NI - 1) + (M iI - 1) (Ni 1 - ) +
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(Mill-l)(NtII - 3)] linear equations which is equal to the number of unknown

expansion coefficients (6a) , for k = 1, I, Ill. Tnerefore, provided the coefficient

matrix is non-singular, this system of equations possesses a unique solution.

5. Direct Method of solution

The global system for the expansion coefficients is

Gz = r (5.1)

where

' I
A 0 0 (5a) rl

B 0

G C 0 z = (6a) r r 3  (5.2)

0 D 14

o 0 E (6a) Il l  r5

The vectors (6a) 1, (6a) [[ and (6a) 111 contain the unknown coefficients in the

expansions in subregions 1, 11 and III, respectively. The first, third and fifth blocks

of rows in (5.2) correspond to the collocation of the linearized differential equation

and boundary conditions not satisfied by the approximations in subregions 1, 11, and

I1, respectively. The second and fourth blocks of rows correspond to the



collocation of ,.e interface continuity conditions between subregions I and I1, and II

and III, respectively.

The system (5.1) is solved using an application of a standard production code

designed for the solution of almost block diagonal systems (Brankin and Gladwell

(1990)). In a recent survey of direct methods for solving systems of equations

arising from spectral domain decomposition methods, Karageorghis and Phillips (1990)

found this solver to be superior to other techniques with regard to cost, stability

and storage. The code uses a modified column elimination procedure with alternate

row and column pivoting based on an algorithm originally described in Varah (1976)

and Diaz, Fairweather and Keast (1983) and is intended to solve systems of the form

shown in Figure 2. These systems comprise rectangular blocks along the diagonal

and are such that no three successive blocks have columns in common.

Fig.2 Almost block diagonal form.

The global spectral collocation matrix C in (5.1) may be written in altrost

block diagonal form in the obvious way:
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PI

0

R2  (5.3)

0
R3  S2

S1  T 1

0

0 T 2

The matrix G has five non-zero blocks, namely,

[Pr ~[2 2] [n] [3 S. and [T,)]

Unfortunately the form (5.3) is not of the structure required by the almost block

diagonal solver due to too much overlap between blocks 2 and 3, and 3 and 4.

However, the transpose of G is of the required form, with three blocks, namely,

[PT IQT] [TIRTIST] and [ST :TT]

One may, therefore, decompose the transpose of the global matrix GT using the

existing NAG subroutine FO1LHF and subsequently solve using the transpose of the

decomposed form of G, say , the system

T
[T] z = r (5.4)

with the NAG subroutine F041HF. Further details of the implementation may be

found in Karageorghis and Phillips (1990).
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6. Numerical Results

The results of numerical calculations of laminar flow through a 2:1

constricted channel are presented and comparisons made with the work of Dennis and

Smith (1980) and Hunt (1989). Dennis and Smith (1980) use a finite difference

discretization of the stream function-vorticity formulation of the Navier-Stokes

equations on a uniform grid. An upwind differencing scheme of Dennis and Hudson

(1978) is used to approximate the vorticity transport equation. This is essential for

reasonably high values of Re in order to maintain the diagonal dominance in the

approximating sets of difference equations. The loss of diagonal dominance presents

difficulties in the convergence of iterative solution techniques. If upwinding is not

used then diagonal dominance can only be established either by sufficiently

decreasing the mesh size, which may be prohibitively expensive, or by using a non-

uniform grid. Hunt (1989) also uses a finite difference discretization of the stream

function-vorticity formulation but on a non-uniform grid. The vorticity unknowns

are eliminated to give a system solely in terms of unknown values of the stream

function. Hunt (1989) investigates the application of artificial viscosity or

upwinding but contrary to expectations finds that the scheme with upwinding fails

to converge for Re > 500 even though one would expect the addition of a *viscous'

like term to have a stabilizing effect. Further for a given value of Re convergence

becomes increasingly more difficult on successively finer grids. The opposing

conclusions on the application of upwind differencing must be due to the different

nature of the grids used in these studies. The ability of these two methods and

the spectral algorithm to describe the main features of the flow is examined.

The solution of the Stokes problem (Re = 0) is used as the initial

approximation to the solution of the Navier-Stokes problem for 0 < Re 150.

However, for Re 150 the Newton process is robust enough to converge from an

initial approximation that is zero everywhere. For Re > 150 continuation in Re is

required for convergence in increments of Re of 50. This means, for example, that

the converged numerical solution for Re = 150 is used as the initial approximation

when calculating the numerical solution for Re = 200.

The Newton process is terminated when the maximum residual is less than

to-7 in magnitude. This invariably occurs after six Newton iterations. The

expansion coefficients are also checked for convergence. The last two iterations
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are found not to affect the first eight significant digits of all the expansion

coefficients.

Numerical experiments are performed on a number of collocation grids. This

is necessary in order to ensure that the approximations obtained are not strongly

grid dependent. The following discretization parameters define the collocation

grids used in this work and the total number of degrees of freedom:

(1) MI = MIl - 4, N' - 0, NII = NI l' - 16, Mill - 16 (977 degrees of

freedom);

(2) MI = M"I - 24, N' -Ni = NIl' = 20, Mill = 24 (1265 degrees of

freedom);

(3) MI = MI" - 4, NI  Nil = N l ' = 20, MIll = 32 (1401 degrees of

freedom);

(4) -MI =M I - 4, N Ni - N l l = 20, Mill = 40 (1537 degrees of

freedom).

For Re . 100 good agreement is obtained on all four grids. For 100< Re< 300

good agreement is reached on grids (2) - (4). Thereafter, for Re 300, grids (3)

and (4) produced almost identical results.

The upstream and downstream truncation lengths are chosen to be 1.0 and 3.5,

respectively. It is necessary to experiment with the number of degrees of freedom

in subregion III since for an insufficient number the flow is not adequately resolved

particularly near the downstream recirculation region. Dennis and Smith (1980)

admit that they do not resolve this feature of the flow and that the use of very

fine grids is necessary to recover the true behaviour. However, from their

numerical calculations they are able to imply that the fluid separates downstream of

the constriction.

The behaviour of the vorticity along the downstream channel wall (y --

> 0) indicates whether the domain has been truncated far enough downstream. As

x -. co the vorticity " - -. 12. If (x, 1) settles down to this value then the

truncation length is adequate. The value of g(x, 9) is plotted in Figs. 3(a) - (c)

for Re = 0, 100, 500, respectively. These figures suggest that the exit length is



suitable for the range of Reynolds numbers considered here. Dennis and Smith

(1980) use downstream truncation lengths of 2 and 2.5 and obtain excellent agreement

in their results which demonstrates that the numerical solutions obtained with a

truncation length of 2 are satisfactory. Hunt (1989) uses a transformation of the

independent variables to set the downstream boundary at x - 1000. Instead of

experimenting with truncation lengths he needs to determine appropriate mapping

parameters which appear in the transformation.

Contours of the stream function are presented in Fig. 4(a) - (i) for Re - 0,

10, 50, 100, 150, 200, 300, 400 and 500, respectively, in the region - I x < 1,

0 : y ! 1. The vortex in the salient corner diminishes in size from Re-0 until

around Re = 45 and then increases slowly as Re is increased further. Let Lv

denote the distance between the point where the separation line meets the top of

the channel and the salient corner. The value of Lv is recorded in Table I for

different methods and for a range of values of Re. The results of Dennis and

Smith (1980) are obtained by means of two successive h 2 - extrapolation operations

on information calculated on grids of mesh lengths 1/10, 1/20 and 1/40. Hunt (1989)

uses a transformed grid with 48 x 128 points. The values of Lv in columns (b) and

(c) agree to within 5%. For the range of values of Re considered here the scheme

of Hunt (1989) that uses artificial viscosity gives results that are closer to those in

column (b) than the scheme without artificial viscosity.

Close-up views, -1 _ x !. 0, 7 y 1 1, of the salient corner are given in

Fig. 5(a) - (e) for Re = 10, 50, 100, 150 and 200, respectively. The first closed

streamline corresponds to a contour height of 1 + 10 "5 and the remaining ones differ

by multiples of 105. The interesting feature in these plots is the second vortex

appearing close to the corner. In the Stokes case Moffatt (1964) predicts an infinite

sequence of eddies running into the corner. The size of this second vortex grows

moderately as Re is increased. Dennis and Smith (1980) only just detect the second

vortex at values of Re of at least a thousand and then only on extremely fine

meshes of size 1/80.

A small recirculation region downstream of the constriction is observed in

Fig. 4 (d) for Re = 100. This region suddenly grows when Re is increased to 200.

In fact when the stream function is calculated at intermediate values of Re this

downstream recirculation region grows suddenly at a value of Re around 175. A
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magnification of this region is shown in Fig. 6 (a) - (d) for Re - 200, 300, 400 and

500, respectively. In these figures the stream function is contoured in the

rectangle 0 '. x <!1 , t y : -. These figures give a good description of the way

in which the vortex develops as Re is increased. In Fig. 6 the fluid is seen to

separate at the corner and not slightly to the right as Hunt (1989) observes.

Further the length of the downstream recirculation regions are significantly longer

than those calculated by Hunt (1989) as can be seen in Table I. Dennis and Smith

(1980) do not detect this region although they say that its existence is implied as

the grid is refined. For Re - 500 they predict that separation occurs at a point in

the interval 0 < x < 0.3 with reattachment at a point beyond x = 1.2. For this

value of Re their prediction of the reattachment point is closer to our calculated

value than the value obtained by Hunt (1989).

7. Concluding Remarks

The steady planar two-dimensional laminar flow of an incompressible fluid

through an abruptly contracting channel is considered for moderate values of the

Reynolds number. The governing equation for the stream function is linearized

using Newton's method and solved using spectral domain decomposition techniques.

A conforming domain decomposition is used which in conjunction with a carefully

constructed collocation strategy ensures that the resulting spectral approximations

are globally C - continuous. In addition, the spectral approximations are C O

except along subdomain interfaces. An efficient direct method for solving the

spectral collocation equations at each stage of the Newton process is described.

At most six Newton iterations are required for convergence. For 0 < Re

150 a converged numerical solution is obtained from an initial approximation that is

zero everywhere. Continuation in Re in increments of 50 is used for

150 < Re < 500. The vortex in the salient corner decreases in size from Re - 0 to

around Re - 45 and then grows slowly as Re is increased further. A small

recirculation region just downstream of the constriction appears at Re - 100. This

region suddenly grows as Re is increased to a value around 175. This recirculation

region extends further downstream as Re is increased.

There is qualitative and quantitative agreement with Dennis and Smith (1980)

in the bulk of the flow and the description of the salient corner vortex. Their
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numerical solutions do not predict a downstream recirculation region although they

say there is a hint of its existence as the grid is refined. Our calculations predict

that the fluid separates at the reentrant corner not just to the right of it as does

Hunt (1989) and that reattachment occurs further downstream than in his

simulations.

This paper demonstrates that spectral domain decomposition techniques are

capable of solving complex flow situations and resolving the main features of the

flow. This is accomplished in an efficient manner using far fewer degrees of

freedom than other methods of discretization.
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FABLE I

Re (a) (b) (c) (d) (e)

0 0.285 0.290 0.284

10 0.150 0.148 0.155

25 0.129 0.125 -

50 0.129 0.123 0.129

75 0.135 0.135 -

100 0.143 0.140 0.144

125 0.154 0.150 - 0.164 0.168

150 0.160 0.155 -

200 0.183 0.183 -

250 0.210 0.205 - 0.209 0.227

300 0.223 0.223 -

350 0.235 0.233 -

400 0.244 0.244 -

450 0.251 0.25t -

500 0.260 0.265 0.266 0.260 0.308

The length of the upstream vortex as a function of Re for (a) spectral collocation

method on grid (3), (b) spectral collocation method on grid (4), (c) extrapolated finite

difference scheme of Dennis and Smith (1980), (d) finite difference scheme of Hunt

(1989) with artificial viscosity, (e) finite difference scheme of Hunt (1989) without

artificial viscosity.
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TABLE II

Re (a) (b) (c)

150 0.088

200 0.363 -

250 0.500 0.106 0.096

300 0.538 -

350 0.700 -

400 0.738 -

450 0.924 -

500 0.995 0.406 0.406

The length of the downstream vortex as a function of Re for (a) spectral

collocation method on grid (4), (b) finite difference scheme of Hunt (1989) with

artificial viscosity, (c) finite difference scheme of Hunt (1989) without artificial

viscosity.



CAPTIONS FOR FIGURES

Fig. 3. Wall vortcity §(x,1/2) for x > 0, for various Reynolds numbers Re.

Fig. 4. Streamfunction contours in -1 x 1 1, 0 - y </ 1, for various Reynolds

numbers Re.

Fig. 5. Close-up views of the salient corner streamlines on -1/8 x < 0,

7/8 _ y < I for various Reynolds numbers Re.

Fig. 6. Close-up views of the streamlines in the region 0 x =1, y <

for various Reynolds numbers Re.
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Fig. 4(a) Re 0
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Fig. 4 (b) Re =10
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Fiq. 4 (c) Re =50
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Fig. 4(d) Re 100
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Fig. 4 (e) Re =150
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Fig. 4(h) Re =400
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Fig. 4(i) Re =500
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Fig. 5(a) Re =10
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Fig. 5(b) Re =50



Fig~. 5 (c) Re =100
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Fig. 5(d) Re =150
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Fig. 5(e) Re =200
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Fig. 6(b) Re =300
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Fia. 6(c) Re =400
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